2011年01月11日
luyued 发布于 2011-01-12 09:06 浏览 N 次
数学配方法公式及例题
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b) =a +2ab+b ,将这个公式灵活运用,可得到各种基本配方形式,如:
a +b =(a+b) -2ab=(a-b) +2ab;
a +ab+b =(a+b) -ab=(a-b) +3ab=(a+ ) +( b) ;
a +b +c +ab+bc+ca= [(a+b) +(b+c) +(c+a) ]
a +b +c =(a+b+c) -2(ab+bc+ca)=(a+b-c) -2(ab-bc-ca)=…
结合其它数学知识和性质,相应有另外的一些配方形式,如:
1+sin2α=1+2sinαcosα=(sinα+cosα) ;
x + =(x+ ) -2=(x- ) +2 ;…… 等等。
Ⅰ、高中数学配方法的示范性题组:
高中数学配方法例题1.
已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。
A. 2 B. C. 5 D. 6
【用配方法分析】 先转换为数学表达式:设长方体长宽高分别为x,y,z,则 ,而欲求对角线长 ,将其配凑成两已知式的组合形式可得。
【解】设长方体长宽高分别为x,y,z,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得: 。
长方体所求对角线长为: = = =5
所以选B。
【使用配方法的要点】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解。这也是我们使用配方法的一种解题模式。
高中数学配方法例题2.
设方程x +kx+2=0的两实根为p、q,若( ) +( ) ≤7成立,求实数k的取值范围。
【配方法的解题步骤】方程x +kx+2=0的两实根为p、q,由韦达定理得:p+q=-k,pq=2 ,
( ) +( ) = = = = ≤7, 解得k≤- 或k≥ 。
又 ∵p、q为方程x +kx+2=0的两实根, ∴ △=k -8≥0即k≥2 或k≤-2
综合起来,k的取值范围是:- ≤k≤- 或者 ≤k≤ 。
【使用配方法的要点】 关于实系数一元二次方程问题,总是先考虑根的判别式“Δ”;已知方程有两根时,可以恰当运用韦达定理。本题由韦达定理得到p+q、pq后,观察已知不等式,从其结构特征联想到先通分后配方,表示成p+q与pq的组合式。假如本题不对“△”讨论,结果将出错,即使有些题目可能结果相同,去掉对“△”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视。
高中数学配方法例题3.
设非零复数a、b满足a +ab+b =0,求( ) +( ) 。
【配方法分析】 对已知式可以联想:变形为( ) +( )+1=0,则 =ω (ω为1的立方虚根);或配方为(a+b) =ab 。则代入所求式即得。
【配方法的解题步骤】由a +ab+b =0变形得:( ) +( )+1=0 ,
设ω= ,则ω +ω+1=0,可知ω为1的立方虚根,所以: = ,ω
配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b) =a +2ab+b ,将这个公式灵活运用,可得到各种基本配方形式,如:
a +b =(a+b) -2ab=(a-b) +2ab;
a +ab+b =(a+b) -ab=(a-b) +3ab=(a+ ) +( b) ;
a +b +c +ab+bc+ca= [(a+b) +(b+c) +(c+a) ]
a +b +c =(a+b+c) -2(ab+bc+ca)=(a+b-c) -2(ab-bc-ca)=…
结合其它数学知识和性质,相应有另外的一些配方形式,如:
1+sin2α=1+2sinαcosα=(sinα+cosα) ;
x + =(x+ ) -2=(x- ) +2 ;…… 等等。
Ⅰ、高中数学配方法的示范性题组:
高中数学配方法例题1.
已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_____。
A. 2 B. C. 5 D. 6
【用配方法分析】 先转换为数学表达式:设长方体长宽高分别为x,y,z,则 ,而欲求对角线长 ,将其配凑成两已知式的组合形式可得。
【解】设长方体长宽高分别为x,y,z,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得: 。
长方体所求对角线长为: = = =5
所以选B。
【使用配方法的要点】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解。这也是我们使用配方法的一种解题模式。
高中数学配方法例题2.
设方程x +kx+2=0的两实根为p、q,若( ) +( ) ≤7成立,求实数k的取值范围。
【配方法的解题步骤】方程x +kx+2=0的两实根为p、q,由韦达定理得:p+q=-k,pq=2 ,
( ) +( ) = = = = ≤7, 解得k≤- 或k≥ 。
又 ∵p、q为方程x +kx+2=0的两实根, ∴ △=k -8≥0即k≥2 或k≤-2
综合起来,k的取值范围是:- ≤k≤- 或者 ≤k≤ 。
【使用配方法的要点】 关于实系数一元二次方程问题,总是先考虑根的判别式“Δ”;已知方程有两根时,可以恰当运用韦达定理。本题由韦达定理得到p+q、pq后,观察已知不等式,从其结构特征联想到先通分后配方,表示成p+q与pq的组合式。假如本题不对“△”讨论,结果将出错,即使有些题目可能结果相同,去掉对“△”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视。
高中数学配方法例题3.
设非零复数a、b满足a +ab+b =0,求( ) +( ) 。
【配方法分析】 对已知式可以联想:变形为( ) +( )+1=0,则 =ω (ω为1的立方虚根);或配方为(a+b) =ab 。则代入所求式即得。
【配方法的解题步骤】由a +ab+b =0变形得:( ) +( )+1=0 ,
设ω= ,则ω +ω+1=0,可知ω为1的立方虚根,所以: = ,ω
上一篇:热门品牌大全 下一篇:AB型巨蟹座 5月21日~7月22日
相关资讯
- 06-30· 引用 (原创)陌上花.赏菊
- 06-21· “感动南京”人物谢二喜
- 06-21· 男士服饰搭配的基本原则
- 06-21· 程式内衣简介
- 06-21· 搭配点评 无论你身材、肤
- 06-21· 品牌内衣
- 06-21· 红脸蛋与绿西瓜
- 06-19· [神马]【2011-03-03】外贸童
- 06-19· 济南小商品 济南大明湖东
- 06-19· 妒
图文资讯
最新资讯
- 06-19· 2011年03月24日
- 06-19· 一个小小的纹身
- 06-19· 女装,女鞋,超值店
- 06-19· 谈谈购房体会
- 06-19· [转载]中医肾病用药体会
- 06-19· 我的读书心得体会
- 06-19· [转载]学习精细化管理写了
- 06-19· 谈谈拜《楞严经》的体会
- 06-18· 上海基本药物增补高价外
- 06-18· 辉瑞与百时美施贵宝叫停